

RINGKASAN PUIL 2011 Bagian 5 dan 6

Oleh:

Ir. Bartien Sayogo

Jakarta, 23 Januari 2015

Bagian 5-51: Pemilihan dan pemasangan perlengkapan listrik – Persyaratan umum

510.1 Ruang Lingkup

Bagian 5-51 mencakup pemilihan perlengkapan dan pemasangannya. Standar ini menyiapkan persyaratan umum agar sesuai dengan tindakan proteksi untuk keselamatan, persyaratan agar berfungsi dengan benar untuk penggunaan instalasi yang dimaksudkan, dan persyaratan yang sesuai terhadap pengaruh eksternal yang akan dihadapi

512.2 Pengaruh eksternal

• 512.2.1 Perlengkapan listrik harus dipilih dan dipasang menurut persyaratan Tabel 51A, yang menunjukkan karakteristik perlengkapan yang perlu menurut pengaruh eksternal yang akan dialami oleh perlengkapan.

Karakteristik perlengkapan harus ditentukan dengan tingkat proteksi atau dengan kesesuaian pengujian.

• 512.2.2 Jika perlengkapan berkaitan dengan konstruksinya tidak mempunyai karakteristik yang relevan terhadap pengaruh eksternal di lokasinya, namun boleh digunakan pada kondisi yang tersedia dengan proteksi tambahan yang sesuai pada pemasangan instalasi. Proteksi demikian tidak boleh berpengaruh buruk terhadap oprerasi dari perlengkapan yang diproteksi demikian.

Daftar ringkasan dari pengaruh eksternal

Α	AA S	Suhu (º	C)	AF	Korosi	AM	Radiasi
	AA1	-60	+5	AF1	Diabaikan	AM1	Diabaikan
	AA2	-40	+5	AF 2	Atmosfer	AM2	Arus sebar
	AA3	-25	+5	AF3	Intermiten	AM3	Elektromagnetik
	AA4	- 5	+40	AF4	Terus menerus	AM4	Ionisasi
	AA5	+ 5	+40			AM5	Elektrostatik
	AA6	+ 5	+60	AG	Pukulan	AM6	Induksi
	AB	Suhu	dan	AG1	Pelan	AN	Sinar matahari
		kelen	nbapan	AG2	Sedang		
				AG3	Keras	AN1	Rendah
	AC	Keting	ggian (m)			AN2	Menengah
	AC	≤ 2 0	00	AH	Vibrasi	AN3	Tinggi
	AC	> 2 0	00	AH1	Rendah	AP	Seismik
				AH2	Sedang	AP1	Diabaikan
				AH3	Kuat	AP2	Rendah
						AP3	Sedang
						AP4	Tinggi

Daftar ringkasan dari pengaruh eksternal (lanjutan)

AD	Air				
AD1 AD2	Diabaikan Tetesan	AJ	Stres mekanis lain		
AD3 AD4	Siraman Semprotan	AK	Tanaman	AQ	Petir
AD5	Semburan	AK1	Tidak merusak	AQ1	Diabaikan
AD6	Ombak	AK2	Merusak	AQ2	Tidak langsung
AD7	Celupan			AQ3	Langsung
AD8	Rendaman	AL	Binatang		
				AR	Gerakan udara
AE	Benda asing	AL1	Tidak merusak		
		AL2	Merusak	AR1	Rendah
AE1	Diabaikan			AR2	Sedang
AE2	Kecil			AR3	Tinggi
AE3	Sangat kecil				
AE4	Debu tipis			AS	Angin
AE5	Debu sedang				
AE6	Debu tebal			AS1	Pelan
				AS2	Sedang
				AS3	Kencang

Daftar ringkasan dari pengaruh eksternal (lanjutan)

В	ВА	Kemampuan	BD	Evakuasi	BE	Material
	BA1	Biasa	BD1	Normal	BE1	Tanpa risiko
	BA2	Anak-anak	BD2	Sulit	BE2	Risiko kebakaran
	BA3	Cacat	BD3	Ramai	BE3	Risiko ledakan
	BA4	Terlatih	BD4	Sulit dan ramai	BE4	Risiko kontaminasi
	BA5	Ahli				
	BB	Daya tahan				
	BC	Kontak ke bumi				
	BC1	Tidak ada				
	BC2	Jarang				
	BC3	Sering				
	BC4	Terus menerus				

Daftar ringkasan dari pengaruh eksternal (lanjutan)

С	CA	Material	СВ	Struktur
	CA1	Tidak dapat terbakar	CB1	Diabaikan
	CA2	Dapat terbakar	CB2	Menyebarkan api
			CB3	Gerakan struktur
			CB4	Fleksibel.

Bagian 5-52:

Pemilihan dan pemasangan perlengkapan listrik – Sistem perkawatan

520 Pendahuluan

520.1 Ruang lingkup

Bagian 5-52 berkaitan dengan pemilihan dan pemasangan sistem perkawatan.

CATATAN Standar ini juga berlaku secara umum untuk konduktor proteksi, sedangkan Bagian 5-54 berisi persyaratan lebih lanjut untuk konduktor ini.

Tabel 52-1 Pemilihan sistem perkawatan

			Metode pemasangan							
Konduktor dan kabel		Tanpa pemagun	Diklip langsung	Konduit	Berumbung kabel (termasuk berumbung pinggiran (skirt), berumbung benam di lantai)	Talang kabel	Tangga kabel Rak kabel Braket kabel	Di atas insulator	Kawat penyangga	
Konduktor pol	Konduktor polos		_	_	-	_	_	+	-	
Konduktor ber	insulasi	_	_	+	+	+	_	+	-	
Kabel	Multiinti	+	+	+	+	+	+	0	+	
berselubung (termasuk berarmor dan berinsulasi mineral)	Inti tunggal	0	+	+	+	+	+	0	+	

⁺ Diizinkan.

Tidak diizinkan.

⁰ Tidak dapat diterapkan, atau tidak biasa digunakan dalam praktik.

Tabel 52-3 Contoh metode instalasi yang memberikan pedoman untuk memperoleh KHA

No urut	Metode instalasi	Uraian	Metode acuan instalasi yang digunakan untuk memperoleh KHA (lihat Lampiran A)
1	Kamar	Konduktor berinsulasi atau kabel inti tunggal dalam konduit dalam dinding berinsulasi secara termal ^a	A1
2	Kamar	Kabel multiinti dalam konduit dalam dinding berinsulasi secara termal ^a	A2
3	Kamar	Kabel multiinti langsung dalam dinding berinsulasi secara termal ^a	A1
4		Konduktor berinsulasi atau kabel inti tunggal dalam konduit pada dinding kayu atau tembok atau berjarak kurang dari 0,3 x diameter konduit dari dinding	В1
5		Kabel multiinti dalam konduit pada dinding kayu atau tembok atau berjarak kurang dari 0,3 x diameter konduit dari dinding	B2

522.5 Keberadaan zat korosif atau polusi (AF)

522.5.1 Jika keberadaan zat korosif atau polusi, termasuk air, mungkin menyebabkan korosi atau pemburukan, bagian sistem perkawatan yang mungkin dipengaruhi harus diproteksi yang sesuai atau dibuat dari bahan yang tahan terhadap zat tersebut.

CATATAN Proteksi yang sesuai untuk penerapan selama pemasangan dapat mencakup pita proteksi, cat atau gemuk.

522.5.2 Logam berbeda yang dapat menimbulkan aksi elektrolitik tidak boleh ditempatkan sehingga dapat kontak satu sama lain, kecuali dilakukan susunan khusus untuk menghindari konsekuensi akibat kontak tersebut.

PENJELASAN

Karena itu untuk sambungan logam yang berbeda, misalnya antara tembaga dan aluminium biasanya digunakan bimetal (dwilogam).

Pada kasus aluminium (Al) dan tembaga (Cu), karena letak Al di sebelah kiri Cu pada deret Volta, maka Al akan lebih mudah melepas elektron dibandingkan Cu, jadi Al akan tergerus lebih dulu bila kedua logam tersebut kontak secara listrik.

Deret Volta

Li-K-Ba-Ca-Na-Mg-Al-Mn-Zn-Cr-Fe-Cd-Co-Ni-Sn-Pb-(H)-Cu-Hg-Ag-Pt-Au

523 Kapasitas hantar arus (KHA)

523.1 Arus yang dihantarkan oleh setiap konduktor untuk periode berkesinambungan selama operasi normal harus sedemikian sehingga batas suhu yang sesuai yang ditentukan dalam Tabel 52-4 tidak dilampaui. Nilai arus harus dipilih sesuai dengan 523.2, atau ditentukan sesuai dengan 523.3.

Tabel 52-4 Suhu operasi maksimum untuk jenis insulasi

Jenis insulasi	Batas suhu ^a °C
Polivinil klorida (PVC)	70 pada konduktor
Polietilen ikat silang (XLPE) dan karet propilen etilen (EPR)	90 pada konduktor ^b
Mineral (ditutup PVC atau polos dapat disentuh)	70 pada selubung
Mineral (polos tidak dapat disentuh dan tidak kontak dengan bahan yang mudah terbakar)	105 pada selubung ^{b, c}

- ^a Suhu konduktor maksimum yang diizinkan tercantum dalam Tabel 52-4 yang mendasari tabel KHA dalam Lampiran A, diambil dari IEC 60502 (1983) dan IEC 60702 (1981) dan diperlihatkan pada tabel ini
- ^b Jika konduktor beroperasi pada suhu yang melebihi 70 °C, maka harus ditegaskan bahwa perlengkapan yang dihubungkan ke konduktor sesuai untuk suhu yang dihasilkan pada hubungan.
- Untuk kabel berinsulasi mineral, suhu operasi yang lebih tinggi dapat diizinlkan tergantung pada peringkat suhu kabel, terminasinya, kondisi lingkungan dan pengaruh eksternal lain.

524 Luas penampang konduktor

- 524.1 Luas penampang konduktor lin dalam sirkit a.b. dan konduktor aktif dalam sirkit a.s. tidak boleh kurang dari nilai yang diberikan dalam Tabel 52-5
- 524.2 Konduktor netral, jika ada, harus mempunyai luas penampang yang sama seperti konduktor lin:
 - dalam sirkit fase tunggal, dua kawat, berapapun penampangnya;
 - dalam sirkit polifase dan fase tunggal tiga kawat, jika ukuran konduktor lin kurang dari atau sama dengan 16 mm2 tembaga atau 25 mm2 aluminium.

524 Luas penampang konduktor (lanjutan)

524.3 Untuk sirkit polifase jika setiap konduktor fase mempunyai luas penampang lebih besar dari 16 mm2 tembaga atau 25 mm2 aluminium, konduktor netral dapat mempunyai luas penampang lebih kecil dari konduktor lin, jika kondisi berikut secara serentak dipenuhi:

- ➤ arus maksimum yang diperkirakan termasuk harmonik, jika ada, pada konduktor netral selama pelayanan normal tidak lebih besar dari KHA luas penampang konduktor netral yang dikurangi;
- konduktor netral diproteksi terhadap arus lebih;
- b ukuran konduktor netral sekurangnya sama dengan 16 mm2 tembaga atau 25 mm2 aluminium.

Tabel 52-5 Luas penampang minimum konduktor

1		D	Konduktor		
Jenis sistem	n perkawatan	Penggunaan sirkit	Bahan	Luas penampang mm2	
Instalasi magun	Kabel dan Konduktor berinsulasi	Sirkit daya dan pencahayaan	Tembaga Aluminium	1,5 Selaras dengan standar kabel SNI IEC 60228 (10 mm²) (lihat Catatan1)	
(ter-pasang tetap)		Sirkit sinyal dan kendali	Tembaga	0,5 (lihat Catatan 2)	
	Konduktor polos	Sirkit daya	Tembaga Aluminium	10 16	
	Konduktor polos	Sirkit sinyal dan kendali	Tembaga	4	
Hubungan fleksibel		Untuk peranti spesifik		Seperti ditentukan dalam standar IEC yang relevan	
dengan konduktor berinsu	lasi dan kabel	Untuk setiap penerapan lain	Tembaga	0,75 ^a	
		Sirkit voltase ekstra rendah untuk penerapan khusus		0,75	

CATATAN 1 Konektor yang digunakan untuk terminasi konduktor aluminium harus diuji dan disahkan untuk penggunaan spesifik ini.

CATATAN 2 Pada sirkit sinyal dan kendali yang dimaksudkan untuk perlengkapan elektronik, diizinkan menggunakan luas penampang minimum 0,1 mm².

^a Pada kabel fleksibel multiinti yang berisikan tujuh inti atau lebih, berlaku Catatan 2.

PENJELASAN

Dengan mempertimbangkan pertumbuhan beban pada instalasi, maka kabel dan konduktor berinsulasi yang digunakan untuk sirkit daya dan pencahayaan magun sebaiknya mempunyai luas penampang minimum 2,5 mm² untuk tembaga, dan sesuai SNI IEC 60228:2009: 10 mm² untuk aluminium

525 Drop voltase dalam instalasi pelanggan

- Bila tidak ada pertimbangan lain, drop voltase antara awal instalasi pelanggan dan perlengkapan sebaiknya tidak lebih besar dari yang diberikan dalam Tabel G52.1
- CATATAN Pertimbangan lain mencakup waktu start untuk motor dan perlengkapan dengan arus bandang (inrush current) tinggi. Kondisi temporer seperti transien voltase dan variasi voltase karena operasi abnormal dapat diabaikan.

Tabel G.52.1 – Drop voltase

Jenis instalasi	Pencahayaan %	Penggunaan Iain %
A – Instalasi voltase rendah yang disuplai langsung dari sistem distribusi voltase rendah publik	3	5
B – Instalasi voltase rendah yang disuplai dari suplai VR privat ^a	6	8

^a Sejauh mungkin, direkomendasikan bahwa drop voltase di dalam sirkit akhir tidak melebihi yang ditunjukkan dalam instalasi jenis A.

Jika sistem perkawatan utama instalasi lebih panjang dari 100 m, drop voltase ini dapat dinaikkan dengan 0,005 % per meter sistem perkawatan di atas 100 m, tambahan ini tidak boleh lebih besar dari 0,5 %.

Drop voltase ditentukan dari pertumbuhan pemanfaat listrik, dengan menerapkan faktor diversitas jika dapat diterapkan, atau dari nilai arus desain sirkit.

5210 MOD Identifikasi kabel dengan warna

5210.1 MOD Ketentuan umum

- Persyaratan warna insulasi inti kabel berlaku untuk semua instalasi magun atau fleksibel, termasuk instalasi dalam perlengkapan listrik.
- Hal tersebut di atas diperlukan untuk mendapatkan kesatuan pengertian mengenai penggunaan sesuatu warna atau warna loreng yang digunakan untuk mengidentifikasi inti kabel, guna keseragaman dan mempertinggi keamanan.
- Sesuai SNI IEC 60445, untuk konduktor lin pada sistem a.b. warna yang lebih disukai adalah HITAM, COKELAT dan ABU-ABU.

5210 MOD Identifikasi kabel dengan warna (lanjutan)

5210.2 MOD Penggunaan warna loreng hijau-kuning

Warna loreng hijau-kuning hanya boleh digunakan untuk menandai konduktor pembumian, konduktor proteksi, dan konduktor yang menghubungkan ikatan ekuipotensial ke bumi.

5210.3 MOD Penggunaan warna biru

Warna biru digunakan untuk menandai konduktor netral atau kawat tengah, pada instalasi listrik dengan konduktor netral. Untuk menghindarkan kesalahan, warna biru tersebut tidak boleh digunakan untuk menandai konduktor lainnya. Warna biru hanya dapat digunakan untuk maksud lain, jika pada instalasi listrik tersebut tidak terdapat konduktor netral atau kawat tengah. Warna biru tidak boleh digunakan untuk menandai konduktor pembumian.

Menentukan KHA (Kapasitas Hantar Arus)

A.52.2 Suhu ambien

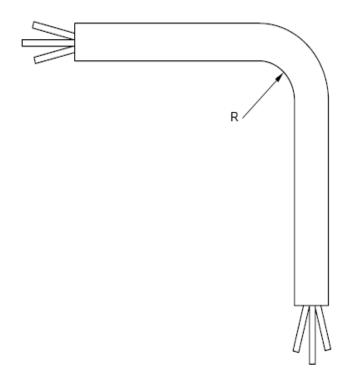
- **A.52.2.1** Tabel KHA dalam lampiran ini berasumsi suhu ambien acuan berikut:
 - untuk konduktor berinsulasi dan kabel di udara, tidak tergantung dari metode pemasangan: 30 °C;
 - untuk kabel tertanam, baik langsung dalam tanah atau dalam talang dalam tanah: 20 °C.

A.52.3 Resistivitas termal tanah

Tabel KHA dalam lampiran ini untuk kabel dalam tanah berkaitan dengan resistivitas termal tanah 2,5 K·m/W. Nilai ini dianggap perlu sebagai tindakan untuk penggunaan di seluruh dunia jika jenis tanah dan lokasi geografis tidak ditentukan (lihat IEC 60287-3-1).

Tabel E.52.1 Jarak penyangga untuk kabel nonarmor pada posisi yang dapat diakses

Diameter total (D) kabel ^a	Jarak maksimum klip ^b mm					
mm	Um	um	Dalam karavan			
	Horizontal	Vertikal	Horizontal	Vertikal		
D ≤ 9	250	400	150	150		
9 < D ≤ 15	300	400	150	150		
$15 < D \le 20$ $20 < D \le 40^{\circ}$	350	450	150	150		
20 < D ≤ 40 ^c	400	550	_	_		


^a Untuk kabel pipih, hal ini diambil sebagai pengukuran sumbu utama.

^b Jarak yang dinyatakan untuk arah horizontal juga dapat diterapkan untuk arah pada sudut lebih dari 30° terhadap vertikal. Untuk arah pada sudut 30° atau kurang terhadap vertikal, dapat diterapkan jarak vertikal.

^c Untuk jarak penyangga kabel berdiameter total melebihi 40 mm, dan untuk kabel inti tunggal yang mempunyai konduktor berluas penampang 300 mm² atau lebih besar, harus diperhatikan rekomendasi pabrikan.

Tabel E.52.2 Radius belokan minimum yang direkomendasikan pada suhu kabel (20 ± 10) °C

	Radius belokan minimum					
Jenis kabel	Diameter kabel mm ≤ 8	Diameter kabel mm > 8 ≤ 12	Diameter kabel mm > 12 ≤ 20	Diameter kabel mm > 20		
Kabel untuk instalasi magun: Penggunaan normal Belokan hati-hati pada terminasi	4 D 2 D	5 D 3 D	6 D 4 D	6 D 4 D		

Kunci

R radius belokan internal

Gambar E.52-1 – Definisi radius belokan internal

Tabel J.52.1 MOD Diameter maksimum dan minimum konduktor tembaga bulat – padat, pilin nonkompak dan fleksibel

1		2	3	4
	Kondukto	or pada kabel untuk	k instalasi magun	Konduktor fleksibel
Luas penampang	F	Padat	Pilin	(kelas 5 and 6)
nominal	(k	elas 1)	(kelas 2)	mm
		mm	mm	
mm²				
111111	Minimum	Maksimum	Maksimum	Maksimum
0,5	_	0,9	1,1	1,1
0,75	_	1,0	1,2	1,3
1,0	_	1,2	1,4	1,5
1,5	1,3	1,5	1,7	1,8
2,5	1,7	1,9	2,2	2,4
4	2,1	2,4	2,7	3,0
6	2,6	2,9	3,3	3,9
10	3,4	3,7	4,2	5,1
16	4,3	4,6	5,3	6,3
25	5,4	5,7	6,6	7,8
35	6,4	6,7	7,9	9,2
50	7,5	7,8	9,1	11,0

Bagian 5-53:

Pemilihan dan pemasangan perlengkapan listrik – Isolasi, penyakelaran dan kendali

534.2.2 Hubungan GPS (Gawai Proteksi Surja)

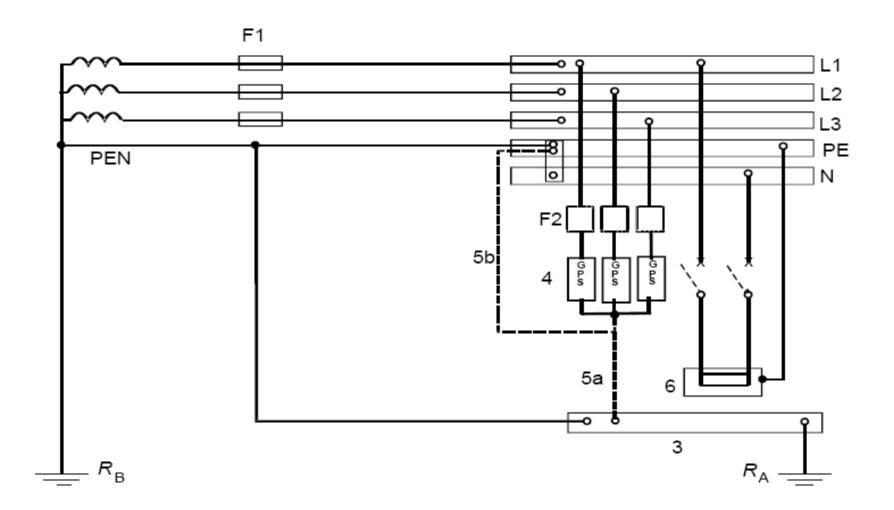
GPS pada atau di dekat awal instalasi harus dihubungkan sekurangkurangnya antara titik berikut (lihat Lampiran A, B dan C):

a) Jika ada hubungan langsung antara konduktor netral dan PE pada atau dekat awal instalasi atau jika tidak ada konduktor netral:

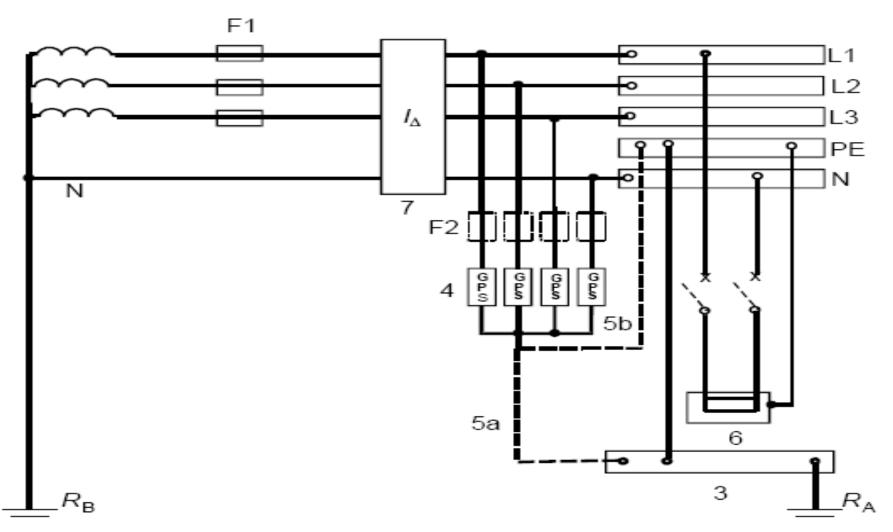
antara setiap konduktor lin dan terminal pembumian utama atau konduktor proteksi utama, mana yang jaraknya terpendek;

CATATAN Impedans yang menghubungkan netral ke PE pada sistem IT tidak dianggap sebagai hubungan.

b) jika tak ada hubungan langsung antara konduktor netral dan PE pada atau dekat awal instalasi, maka:


antara setiap konduktor lin dan terminal pembumian utama atau konduktor proteksi utama, serta antara konduktor netral dan terminal pembumian utama atau konduktor proteksi, mana yang jaraknya terpendek – hubungan tipe 1;

atau


antara setiap konduktor lin dan konduktor netral serta antara konduktor netral dan terminal pembumian utama atau konduktor proteksi, mana yang jaraknya terpendek – hubungan tipe 2.

CATATAN Jika konduktor lin dibumikan, maka dianggap setara dengan konduktor netral untuk penerapan subayat ini.

Pemasangan GPS pada sistem TN

Pemasangan GPS pada sistem TT

Bagian 5-54:

Pemilihan dan pemasangan perlengkapan listrik – Susunan pembumian, konduktor proteksi dan konduktor ikatan proteksi

541.1 Ruang lingkup

Bagian 5-54 menunjukkan susunan pembumian, konduktor proteksi dan konduktor ikatan proteksi guna memenuhi keselamatan instalasi listrik.

Tabel 54.4 Luas penampang minimum konduktor pembumian yang ditanam dalam tanah

	Diproteksi secara mekanis	Tidak diproteksi secara mekanis
Diproteksi terhadap	2,5 mm² Cu	16 mm² Cu
korosi	10 mm² Fe	16 mm² Fe
Tidak diproteksi	25 mm² Cu	
terhadap korosi	50 mm² Fe	

Tabel 54.5 MOD Luas penampang minimum konduktor proteksi

Luas penampang konduktor lin S mm²	Luas penampang minimum konduktor proteksi terkait mm² Jika konduktor proteksi berbahan
	sama seperti konduktor lin
S ≤ 16	S
16 < S ≤ 35	16
S > 35	S/2

Konduktor proteksi

543.2.3 Bagian logam berikut tidak diizinkan untuk digunakan sebagai konduktor proteksi atau sebagai konduktor ikatan proteksi:

- pipa air logam;
- pipa yang mengandung gas atau cairan yang mudah terbakar;
- bagian konstruksi yang terkena stres mekanis dalam pelayanan normal;
- konduit logam fleksibel atau mudah dibengkokkan, kecuali didesain untuk keperluan itu;
- bagian logam fleksibel;
- kawat penyangga.

Bagian 5-55:

Pemilihan dan pemasangan perlengkapan listrik – Perlengkapan lain

551 Set pembangkit voltase rendah

551.1 Ruang lingkup

Ayat ini memberikan persyaratan untuk pemilihan dan pemasangan set pembangkit voltase rendah dan voltase ekstra rendah yang dimaksudkan untuk menyuplai semua atau sebagian instalasi, baik kontinu maupun kadang-kadang. Persyaratan juga termasuk untuk instalasi dengan susunan suplai berikut:

- suplai ke instalasi yang tidak dihubungkan ke sistem untuk distribusi listrik ke publik;
- suplai ke instalasi sebagai alternatif ke sistem untuk distribusi listrik ke publik;
- suplai ke instalasi yang paralel dengan sistem untuik distribusi listrik ke suplai publik;
- kombinasi di atas yang sesuai.
- Bagian ini tidak berlaku untuk bagian swaisi perlengkapan listrik voltase ekstra rendah yang menyertakan sumber energi dan beban pemanfaat energi dan untuk itu berlaku standar produk spesifik yang mencakup persyaratan untuk pelayanan keselamatan.

KESDM

556 Pelayanan keselamatan

556.1 Persyaratan umum

- **556.1.1** Pelayanan keselamatan yang disyaratkan untuk beroperasi pada kondisi kebakaran harus memenuhi persyaratan berikut:
- sumber keselamatan harus mempertahankan suplai listrik pada durasi yang cukup;
- perlengkapan harus mempunyai ketahanan kebakaran pada durasi yang cukup dengan pemilihan atau pemasangan yang sesuai.

CATATAN 1 Pelayanan keselamatan dapat juga disyaratkan untuk memenuhi regulasi nasional atau lokal tambahan.

CATATAN 2 Dua jenis sumber suplai listrik boleh ada: sumber keselamatan dan sumber normal.

CATATAN 3 Sumber normal adalah misalnya jaringan suplai publik.

KESDM

- **556.5.1.10** Sumber keselamatan harus mempunyai kapasitas yang cukup untuk pelayanan keselamatan.
- 556.5.1.11 Jika pelayanan keselamatan beberapa bangunan atau lokasi disuplai dari sumber keselamatan tunggal, kegagalan pada pelayanan keselamatan salah satu bangunan atau lokasi tidak boleh membahayakan operasi normal sumber keselamatan.

559 Luminer dan instalasi pencahayaan

559.5 Proteksi terhadap efek termal

559.5.1 Untuk pemilihan luminer berkaitan dengan efek termal di sekitarnya, fitur berikut harus diperhitungkan:

- a) daya maksimum yang diizinkan yang didisipasi oleh lampu;
- b) ketahanan kebakaran bahan di dekatnya:
 - di titik instalasi,
 - dalam area yang dipengaruhi secara termal;
- jarak minimum bahan mudah terbakar, termasuk yang dalam jalur sorotan lampu sorot.

Bagian 6: Verifikasi

□ 6.1 Ruang lingkup

- Bagian 6 memberikan persyaratan untuk verifikasi awal dan periodik dari instalasi listrik.
- Ayat 61 memberikan persyaratan untuk verifikasi awal dengan inspeksi dan pengujian dari instalasi listrik, untuk menentukan apakah persyaratan pada Bagian lain PUIL telah dipenuhi dan menentukan persyaratan untuk pelaporan hasil verifikasi awal, sejauh dapat dipraktikkan dengan wajar. Verifikasi awal dilakukan setelah selesainya instalasi baru atau selesainya tambahan atau perubahan pada instalasi yang telah ada.
- Ayat 62 memberikan persyaratan untuk verifikasi periodik pada instalasi listrik untuk menentukan apakah instalasi dan semua bagian perlengkapannya berada dalam kondisi yang memuaskan untuk digunakan dan menentukan persyaratan untuk pelaporan hasil verifikasi periodik, sejauh dapat dipraktikkan dengan wajar.

61 Verifikasi awal

□ 61.1 Umum

- □ 61.1.1 Setiap instalasi harus diverifikasi selama pemasangan, sejauh dapat dipraktikkan dengan wajar, dan pada saat penyelesaian, sebelum difungsikan dalam pelayanan oleh penggunanya.
- □ 61.1.2 Informasi yang disyaratkan pada 514.5 Bagian 5-51 dan informasi lain yang perlu untuk verifikasi awal, harus tersedia untuk orang yang melakukan verifikasi awal.
- Verifikasi awal harus mencakup pembandingan dari hasil dengan kriteria yang relevan untuk memastikan bahwa persyaratan PUIL telah dipenuhi.

62 Verifikasi periodik

- □ 62.1.1 Bila disyaratkan, verifikasi periodik setiap instalasi harus dilakukan sesuai dengan 62.1.2 hingga 62.1.6.
 - Bila mungkin, rekaman dan rekomendasi verifikasi periodik terdahulu harus diperhitungkan.
- □ 62.1.2 Inspeksi periodik yang terdiri atas pemeriksaan rinci instalasi harus dilakukan tanpa pembongkaran, atau dengan pembongkaran sebagian, jika disyaratkan, ditambah dengan pengujian yang sesuai dari Ayat 61, termasuk verifikasi untuk memperlihatkan bahwa persyaratan untuk waktu diskoneksi seperti yang dicantumkan dalam Bagian 4-41 untuk GPAS dipenuhi, dan dengan pengukuran, untuk memberikan:
 - keselamatan orang dan ternak terhadap efek kejut listrik dan luka bakar, dan
 - proteksi terhadap kerusakan pada harta benda karena kebakaran dan bahang yang timbul dari kerusakan instalasi, dan
 - konfirmasi bahwa instalasi tidak rusak atau memburuk sehingga mengurangi keselamatan, dan
 - identifikasi kerusakan instalasi dan penyimpangan dari persyaratan standar ini yang dapat menimbulkan bahaya.

KESDM

PENJELASAN

Sesuai Pasal 22 Ayat (7) Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 05 tahun 2014 tentang Tata Cara Akreditasi dan Sertifikasi Ketenagalistrikan, Sertifikat Laik Operasi instalasi pemanfaatan tenaga listrik tegangan rendah berlaku untuk jangka waktu 15 (lima belas) tahun dan dapat diperpanjang.

Sesuai Pasal 22 Ayat (8) Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 05 tahun 2014 tentang Tata Cara Akreditasi dan Sertifikasi Ketenagalistrikan, Sertifikat Laik Operasi instalasi pemanfaatan tenaga listrik tegangan rendah sebagaimana dimaksud pada ayat (5) tidak berlaku apabila terdapat perubahan kapasitas, perubahan instalasi, atau direkondisi.

Jadi verifikasi periodik harus dilakukan setelah umur instalasi mencapai 15 tahun.

Bila instalasi diubah atau direkondisi sebelum 15 tahun, harus diverifikasi ulang sebelum dinyatakan laik operasi.

Tabel 3.20-1 Nilai resistans insulasi minimum (PUIL 2000)

Tegangan Sirkit Nominal	Tegangan Uji Arus Searah	Resistans Insulasi
V	V	MΩ
Tegangan ekstra rendah (SELV, PELV dan FELV) yang memenuhi persyaratan 3.3.1 dan 3.3.2	250	≥ 0,25
Sampai dengan 500 V, dengan pengecualian hal tersebut di atas	500	≥ 0,5
Di atas 500 V	1000	≥ 1,0

Tabel 6A Nilai minimum resistans insulasi (PUIL 2011)

Tegangan Sirkit Nominal	Tegangan Uji Arus Searah	Resistans Insulasi
V	V	MΩ
SELV dan PELV	250	≥ 0,5
Sampai dengan 500 V, termasuk FELV	500	≥ 1,0
Di atas 500 V	1 000	≥ 1,0

Terima Kasih

www.djk.esdm.go.id